Обмен веществ энергия систем кратко. Обмен веществ и энергии в организме

Обмен веществ и энергии (метаболизм) -- это совокупность химических реакций, протекающих в клетках или в целостном организме и заключающихся в синтезе сложных молекул и новой протоплазмы (анаболизм) и в распаде молекул с освобождением энергии (катаболизм). Энергия необходима для биосинтеза (образования нового вещества), осмотической работы (поглощения и секреции клетками разных веществ), механической работы (при движении) и других реакций.

Обмен веществ и энергии -- это важнейшее свойство живого, проявляющееся на разных уровнях организации живого. Благодаря обмену веществ и энергии происходят рост и размножение, формируются другие важнейшие свойства клеток и организмов. Характерная особенность метаболических функций животных и растительных клеток заключается в том, что они являются ферментативными и сходны между собой, поскольку клетки всех орга низмов обладают всеми молекулами, играющими центральную роль в метаболизме и обеспечивающими переход энергии одного вида в энергию другого вида. Кроме того в основе регуляции метаболических путей лежат общие механизмы. Благодаря этому энергетические процессы у всех живых существ сходны. Жизнь существует и продолжается лишь благодаря энергии

Анаболизм и катаболизм

Основными метаболическими процессами являются анаболизм (ассимиляция) и катаболизм (диссимиляция).

Анаболизм, или ассимиляция (от лат. assimilatio -- уподобление), представляет собой эндотермический процесс уподобления поступающих в клетку веществ веществам самой клетки. Она является «созидательным» метаболизмом.

Важнейшим моментом ассимиляции является синтез белков и нуклеиновых кислот. Частным случаем анаболизма является фотосинтез, который представляет собой биологический процесс, при котором органическое вещество синтезируется из воды, двуокиси углерода и неорганических солей под влиянием лучистой энергии Солнца. Фотосинтез в зеленых растениях является автотрофным типом обмена.

Катаболизм, или диссимиляция (от лат. dissimilis -- расподобление), является экзотермическим процессом, при котором происходит распад веществ с освобождением энергии. Этот распад происходит в результате переваривания и дыхания. Переваривание представляет собой процесс распада крупных молекул на более мелкие молекулы, тогда как дыхание является процессом окислительного катаболизма простых Сахаров, глицерина, жирных кислот и дезаминированных аминокислот, в результате которого происходит освобождение жизненно необходимой химической энергии. Эта энергия используется для пополнения запасов аденозинтри-фосфата (АТФ), который является непосредственным донором (источником) клеточной энергии, универсальной энергетической «валютой» в биологических системах. Пополнение запасов АТФ обеспечивается реакцией фосфата (Ф) с аденозиндифосфатом (АДФ), а именно:

АДФ + Ф + энергия АТФ

Когда АТФ разлагается на АДФ и фосфат, энергия клетки освобождается и используется для работы в клетке. АТФ представляет собой нуклеотид, состоящий из остатков аденина, рибозы и трифосфата (трифосфатных групп), тогда как аденозиндифосфат (АДФ) имеет лишь две фосфатные группы. Богатство АТФ энергией определяется тем, что его трифосфатный компонент содержит две фос-фоангидридные связи. Энергия АТФ превышает энергию АДФ на 7000 ккал/моль. Этой энергией обеспечиваются все биосинтетические реакции в клетке в результате гидролиза АТФ до АДФ и неорганического фосфата. Итак, цикл АТФ-АДФ является основным механизмом обмена энергии в живых системах.

К живым системам применимы два закона термодинамики.

В соответствии с первым законом термодинамики (законом сохранения энергии) энергия на протяжении химических и физических процессов не создается, не исчезает, а просто переходит из одной формы в другую, пригодную в той или иной мере для выполнения работы, т. е. использование энергии для выполнения какой-либо работы или переход энергии из одной формы в другую не сопровождается изменением (уменьшением или увеличением) общего количества энергии. Имея в виду глобальные категории, можно сказать, что вопреки любым физическим или химическим изменениям во Вселенной, количество энергии в ней останется неизменным.

В соответствии со вторым законом термодинамики физические и химические процессы протекают в направлении необратимого перехода полезной энергии в хаотическую, неупорядоченную форму и установления равновесия между упорядоченным состоянием и хаотическим, неупорядоченным. По мере приближения к установлению равновесия между упорядоченностью и неупорядоченностью и к остановке процесса происходит уменьшение свободной энергии, т.е. той порции общей (полезной) энергии, которая способна производить работу при постоянной температуре и постоянном давлении. Когда количество свободной энергии уменьшается, то повышается та часть общей внутренней энергии системы, которая является мерой степени случайности и неупорядоченности (дезорганизации) и называется энтропией. Другими словами, энтропия есть мера необратимого перехода полезной энергии в неупорядоченную форму. Таким образом, естественная тенденция любой системы направлена на повышение энтропии и уменьшение свободной энергии, которая является самой полезной термодинамической функцией. Живые организмы являются высокоупорядоченными системами. Для них характерно содержание очень большого количества информации, но они бедны энтропией.

Если Вселенная представляет собой реакционные системы, под которыми понимают совокупность веществ, благодаря которым протекают физические и химические процессы, с одной стороны, и окружающую среду, с которой реакционные системы обмениваются информацией, с другой стороны, то в соответствии со вторым законом термодинамики в ходе физических процессов или химических реакций энтропия Вселенной увеличивается. Метаболизм живых организмов не сопровождается возрастанием внутренней неупорядоченности, т. е. для живых организмов не характерны возрастные энтропии. В любых условиях все организмы, начиная от бактерий и заканчивая млекопитающими, сохраняют упорядоченный характер своего строения. Однако для самой энтропии характерно то, что она возрастает в окружающей среде, причем непрерывное возрастание энтропии в окружающей среде обеспечивается существующими в среде живыми организмами. Например, для извлечения свободной энергии анаэробные организмы используют глюкозу, которую они получают из окружающей среды и окисляют молекулярным кислородом, проникающим тоже из среды. При этом конечные продукты окислительного метаболизма (СО 2 и H 2 O) поступают в среду, что и сопровождается возрастанием энтропии среды, которое частично происходит из-за рассеивания тепла. Возрастание энтропии в этом случае повышается, кроме того за счет возрастания количества молекул после окисления (C 6 H 12 O 6 + 6O 2 6СО 2 + 6Н 2 О), т. е. образование из 7 молекул 12 молекул. Как видно, молекулярная неупорядоченность ведет к энтропии.

Для живых существ первичным источником энергии является солнечная радиация, в частности видимый свет, который состоит из электромагнитных волн, встречающихся в виде дискретных единиц, называемых фотонами или квантами света. В живом мире одни живые существа способны улавливать световую энергию, другие получают энергию в результате окисления пищевых веществ.

Энергия видимого света улавливается зелеными растениями в процессе фотосинтеза, который осуществляется в хлоропластах их клеток. Благодаря фотосинтезу живые существа создают упорядоченность из неупорядоченности, а световая энергия превращается в химическую энергию, запасаемую в углеводах, являющихся продуктами фотосинтеза. Таким образом, фотосинтезирующие организмы извлекают свободную энергию из солнечного света. В результате этого клетки зеленых растении обладают высоким содержанием свободной энергии.

Получение энергии в результате окисления неорганических веществ происходит при хемосинтезе.

Животные организмы получают энергию, уже запасенную в углеводах, через пищу. Следовательно, они способствуют увеличению энтропии среды. В митохондриях клеток этих организмов энергия, запасенная в углеводах, переводится в форму свободной энергии, подходящей для синтеза молекул других веществ, а также для обеспечения механической, электрической и осмотической работы клеток. Освобождение энергии, запасенной в углеводах, осуществляется в результате дыхания -- аэробного и анаэробного. При аэробном дыхании расщепление молекул, содержащих запасенную энергию, происходит путем гликолиза и в цикле Кребса. При анаэробном дыхании действует только гликолиз. Таким образом, жизнедеятельность клеток животных организмов обеспечивается в основном энергией, источником которой служат реакции окисления-восстановления «топлива» (глюкозы и жирных кислот), в процессе которых происходит перенос электронов от одного соединения (окисление) к другому (восстановление). С окислительно-восстановительными реакциями сопряжено фосфорилирование. Эти реакции протекают как при фотосинтезе, так и дыхании.

Организм -- открытая саморегулирующая система, она поддерживает и реплицирует себя посредством использования энергии, заключенной в пище, либо генерируемой Солнцем. Непрерывно поглощая энергию и вещества, жизнь не «стремится» к равновесию между упорядоченностью и неупорядоченностью, между высокой молекулярной оранизацией и дезорганизацией. Напротив, для живых существ характерна упорядоченность как в их структуре и функциях, так и в превращении и использовании энергии. Таким образом, сохраняя внутреннюю упорядоченность, но получая свободную энергию с солнечным светом или пищей, живые оранизмы возвращают в среду эквивалентное количество энергии, но в менее полезной форме, в основном в виде тепла, которое, рассеиваясь, уходит во Вселенную.

Процессы обмена веществ и энергии подвержены регуляции, причем существует множество регулирующих механизмов. Главнейшим механизмом регуляции метаболизма является контроль количества ферментов. К числу регулирующих механизмов относят также контроль скорости расщепления субстрата ферментами, а также контроль каталитической активности ферментов. Метаболизм подвержен так называемому обратному аллостерическому контролю, заключающемуся в том, что во многих биосинтетических путях первая реакция может быть ингибирована (подавлена) конечным продуктом. Можно сказать, что такое ингибирование происходит по принципу обратной связи. В регуляции обмена веществ и энергии имеет значение и то, что метаболические пути синтеза и распада почти всегда разобщены, причем у эукариотов это разобщение усиливается компартментализацией клеток. Например, местом окисления жирных кислот в клетках являются митохондрии, тогда как их синтез происходит в цитозоле. Многие реакции метаболизма подвержены некоторой регуляции со стороны так называемого энергетического статуса клетки, показателем которого является энергетический заряд, определяемый суммой молярных фракций АТФ и АДФ. Энергетический заряд в клетке всегда постоянен. Синтез АТФ ингибируется высоким зарядом, тогда как использование АТФ стимулируется таким же зарядом.

Обмен веществ и энергии подразумевает комплекс непростых биохимических реакций, разобраться в которых обычному человеку бывает довольно сложно. Данная статья поможет понять, какие процессы происходят в организме с необходимыми соединениями, которые мы потребляем с едой и что влияет на наш метаболизм.

Энергообмен и метаболизм протекают по общей схеме:

  • поступление веществ в организм, его преобразование и абсорбция;
  • применение в организме;
  • выведение или запасание излишков.

Все процессы метаболизма разделяются на 2 типа:

  1. Ассимиляция (пластический обмен, анаболизм) – образование специфичных для организма соединений из поступивших в него веществ.
  2. Диссимиляция – процессы разложения сложных органических соединений до более простых, из которых потом будут образованы новые, особенные вещества. Реакции диссимиляции проходят с высвобождением энергии, поэтому совокупность такого вида процессов называют также энергообменом или катаболизмом.

Данные процессы противоположны друг другу, но тесно связаны между собой. Они протекают непрерывно, обеспечивая нормальную жизнедеятельность. За регуляцию обмена веществ и энергии отвечает нервная система. Главным отделом ЦНС, управляющим всеми типами метаболизма, является гипоталамус.

Основные виды

В зависимости от форм соединений, которые подвергаются трансформации в организме, выделяют несколько видов обмена. Каждый из них имеет свою специфику.

Белки

Белки или пептиды – полимеры, образованные аминокислотами.

Выполняют множество жизненно важных функций:

  • структурная (присутствуют в структуре клеток тканей, составляющих организм человека);
  • ферментативная (ферменты – это белки, участвующие практически во всех биохимических процессах);
  • двигательная (взаимодействие пептидов актина и миозина обеспечивает все движения);
  • энергетическая (разлагаются, высвобождая энергию);
  • защитная (белки – иммуноглобулины участвуют в формировании иммунитета);
  • участвуют в регуляции водно-солевого баланса;
  • транспортная (обеспечивают доставку газов, биологически активных веществ, лекарственных средств и др.).

Попав в организм с продуктами питания, белки распадаются до аминокислот, из которых затем синтезируются новые, свойственные данному организму пептиды. При малом поступлении белков с продуктами питания, 10 из 20 необходимых аминокислот могут вырабатываться организмом, остальные же являются незаменимыми.

Этапы белкового метаболизма:

  • поступление белков с пищей;
  • распад пептидов до аминокислот в ЖКТ;
  • перемещение последних в печень;
  • распределение аминокислот в тканях;
  • биосинтез специфичных пептидов;
  • выведение из организма неиспользованных аминокислот в виде солей.

Жиры

К видам обмена веществ и энергии в организме человека относится и метаболизм жиров. Жиры — соединения глицерина и жирных кислот. Долгое время считалось, что их употребление не обязательно для полноценной работы организма. Однако определенные типы таких веществ содержат значимые противосклеротические составляющие.

Жиры, будучи важным источником энергии, помогают сохранить в организме белки, которые начинают использоваться для ее получения при нехватке углеводов и липидов. Жиры обязательны для усвоения витаминов А, Е, D. Также липиды содержатся в цитоплазме и клеточной стенке.

Биологическая ценность жиров определяется типом жирных кислот, которыми они были образованы. Эти кислоты могут иметь два вида:

  1. Насыщенные, не имеющие в своей структуре двойных связей, считаются наиболее вредными, так как чрезмерное употребление продуктов с большим содержанием данного вида кислот может стать причиной атеросклероза, ожирения и прочих заболеваний. Присутствуют в сливочном масле, сливках, молоке, жирном мясе.
  2. Ненасыщенные - полезные для организма. К ним относятся Омега -3, -6 и -9 кислоты. Способствуют укреплению иммунитета, восстановлению гормонального фона, предупреждают отложение холестерина, улучшают внешний вид кожи, ногтей и волос. Источники подобных соединений - масла разных растений и рыбий жир.

Этапы обмена липидов:

  • поступление жиров в организм;
  • распад в ЖКТ до глицерина и жирных кислот;
  • образование липопротеидов в печени и тонком кишечнике;
  • транспорт липопротеидов в ткани;
  • образование специфических липидов клеток.

Жировые излишки откладываются под кожей или вокруг внутренних органов.

Углеводы

Углеводы или сахара - главный источник энергии в организме.

Процессы обмена углеводов:

  • преобразование углеводов в ЖКТ в простые сахара, которые затем всасываются;
  • превращение глюкозы в гликоген, его накопление в печени и мышцах либо использование для выработки энергии;
  • преобразование гликогена в глюкозу печенью в случае падения уровня сахара в крови;
  • создание глюкозы из неуглеводных компонентов;
  • превращение глюкозы в жирные кислоты;
  • кислородное разложение глюкозы до углекислого газа и воды.

В случае чрезмерного употребления пищи, богатой глюкозой, углевод преобразуется в липиды. Они откладываются под кожей и могут быть использованы для дальнейшей трансформации энергии в клетках.

Значение воды и минеральных солей

Водно-солевой обмен – комплекс процессов поступления, применения и выведения воды и минералов. Большая часть жидкости поступает в организм извне. И также она в малых объемах выделяется в организме в ходе разложения питательных веществ.

Функции воды в организме:

  • структурная (необходимый компонент всех тканей);
  • растворение и транспорт веществ;
  • обеспечение многих биохимических реакций;
  • обязательный компонент биологических жидкостей;
  • обеспечивает постоянство водно-солевого баланса, участвует в терморегуляции.

Из организма жидкость выводится с помощью легких, потовых желез, мочевыделительной системы и кишечника.

Минеральные соли, получаемые с пищей, можно разделить на макро- и микроэлементы. К первым относят минералы, содержащиеся в значительных количествах - магний, кальций, натрий, фосфор и прочие. Микроэлементы нужны организму в очень малом объеме. К ним относятся железо, марганец, цинк, йод и другие элементы.

Нехватка минералов может негативно сказаться на деятельности различных систем организма. Так, при дефиците магния и калия наблюдаются сбои в работе ЦНС, мышц (в том числе и миокарда). Недостаток кальция и фосфора может сказаться на прочности костей, а нехватка йода - на функции щитовидной железы. Нарушения водно-солевого баланса способно стать причиной мочекаменной болезни.

Витамины

Витамины – большая группа простых соединений, необходимых для полноценной работы всех систем организма.

Витамины делятся на 2 группы:

  • водорастворимые (витамины группы В, витамин С и РР), не накапливающиеся в организме;
  • жирорастворимые (А, D, Е), имеющие подобное свойство накопления.

Определенные соединения (витамин В12, фолиевая кислота) вырабатываются кишечной микрофлорой. Многие витамины являются частью различных ферментов, без которых невозможно осуществление биохимических процессов.

Этапы обмена витаминов:

  • поступление с пищей;
  • перемещение к месту накопления или утилизации;
  • преобразование в кофермент (составляющее фермента небелкового происхождения);
  • соединение кофермента и апофермента (белковой части фермента).

При нехватке какого-либо витамина развивается гиповитаминоз, при избытке – гипервитаминоз.

Обмен энергии

Энергетический обмен (катаболизм) – комплекс реакций распада сложных питательных веществ до более простых с выходом энергии, без которой невозможны рост и развитие, движение и другие проявления жизнедеятельности. Полученная энергия накапливается в форме АТФ (универсальный энергетический источник в живых организмах), который содержится во всех клетках.

Количество энергии, высвобождаемой после употребления продукта питания, называется его энергетической ценностью. Измеряется этот показатель в килокалориях (ккал).

Энергообмен проходит в несколько этапов:

  1. Подготовительный. Подразумевает распад сложных питательных веществ в ЖКТ до более простых.
  2. Бескислородное брожение — трансформация глюкозы без участия кислорода. Процесс протекает в цитоплазме клеток. Конечными продуктами этапа являются 2 молекулы АТФ, вода и пировиноградная кислота.
  3. Кислородный или аэробный этап. Проходит в митохондриях (специальных органоидах клеток), при этом пировиноградная кислота распадается с участием кислорода, образуя 36 молекул АТФ.

Терморегуляция

Терморегуляцией называют способность живого организма поддерживать постоянную температуру тела, которая является важным показателем теплового обмена. Чтобы этот показатель был стабильным, должно соблюдаться равенство между теплоотдачей и теплопродукцией.

Теплопродукция -выделение тепла в организме. Его источником служат ткани, в которых протекают реакции с высвобождением энергии. Так, важную роль в терморегуляции играет печень, ведь в ней осуществляется множество биохимических процессов.

Теплоотдача или физическая регуляция может проходить по трем путям:

  • теплопроведение – отдача тепла окружающей среде и предметам, соприкасающимся с кожей;
  • теплоизлучение – отдача тепла воздуху и окружающим предметам путем излучения инфракрасных (тепловых) лучей;
  • испарение – отдача тепла с помощью улетучивания влаги с потом или в процессе дыхания.

Что влияет на процесс метаболизма

Обмен веществ каждого конкретного организма имеет свои особенности. Скорость метаболизма определяется несколькими факторами:

  • половая принадлежность (обычно у мужчин процессы метаболизма протекают несколько быстрее, чем у женщин);
  • генетический фактор;
  • доля мышечной массы (людям, обладающим развитой мускулатурой требуется больше энергии для работы мышц, поэтому происходящие процессы будут протекать быстрее);
  • возраст (с годами скорость обмена веществ снижается);
  • гормональный фон.

Огромное влияние на процесс метаболизма оказывает питание. Здесь важен и рацион, и режим приема пищи. Для правильной работы организма нужно оптимальное количество употребляемых белков, жиров, углеводов, витаминов, минералов и жидкости. Важно помнить, что принимать пищу лучше понемногу, но часто, так как большие перерывы между трапезами способствуют замедлению обмена веществ, а значит, могут привести к ожирению.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ

Общая характеристика обмена веществ и энергии. Обмен веществ - это наиболее общее свойство, характерное для всех живых организмов. В цитоплазме клеток органов и тканей постоянно идет процесс синтеза сложных высоко молекулярных соединений и одновременно с этим - их распад с выделением энергии и образованием простых низкомолекулярных веществ - углекислого газа, воды, аммиака и др. Процесс синтеза органических веществ принято называть ассимиляцией или пластическим обменом. Основные химические соединения клетки (аминокислоты, нуклеотиды и др.) синтезируются в клетке из глюкозы и аммиака в результате нескольких сотен последовательных химических реакций. Каждый этап в этой цепи реакций осуществляется специфическим ферментом. В ходе ассимиляции обновляются органоиды клетки и накапливается запас энергии.

Процесс распада органических веществ называется диссимиляцией. Распад структурных элементов клетки сопровождается выделением заключенной в химических связях энергии, а конечные продукты распада, вредные для организма, выводятся за пределы клетки, а затем из организма. Подобного типа реакции идут с поглощением кислорода, поэтому расщепление органических веществ связано с окислением, а освобожденная при этом энергия идет на синтез АТФ, необходимой для ассимиляции. Все эти процессы происходят при участии большого количества ферментов, обеспечивающих определенную последовательность обменных реакций во времени, месте и скорости их протекания.

Реакции, происходящие при ассимиляции и диссимиляции, хотя и представляют собой прямо противоположные, взаимоисключающие процессы, в живых организмах тесно взаимосвязаны и неотделимы друг от друга, составляя две стороны единого процесса обмена веществ.

Сущность обмена веществ заключается в том, что организм потребляет из окружающей среды различные органические и неорганические соединения и химические элементы, использует их в своей жизнедеятельности и выделяет во внешнюю среду конечные продукты обмена в виде более простых органических и неорганических соединений.

Значение для организма белков. Белковые пищевые продукты - мясо, рыба, яйца, творог и другие, попав в пищеварительный тракт, подвергаются механической и химической обработке. В желудке белок расщепляется до пептидов, а в двенадцатиперстной кишке до аминокислот. В тонком кишечнике аминокислоты всасываются в кровь и разносятся ко всем органам и тканям. В клетке из аминокислот синтезируются специфические для данной ткани и для данного организма белки. Часть белков, входящих в состав клеток органов и тканей, а также аминокислоты, поступающие в организм, но не использованные в синтезе белка, подвергаются распаду с освобождением 17,6 кДж энергии на 1 г вещества с образованием воды, углекислого газа, мочевины, аммиака и др. Продукты диссимиляции белка выделяются из организма в составе мочи, пота и частично с выдыхаемым воздухом. В запас белки не откладываются. У взрослого человека их синтезируется столько, сколько необходимо для компенсации распавшихся белков. При избытке белковой пищи она преобразуется в жиры и гликоген. Потребность белков пищи в сутки составляет 100-118 г. В детском возрасте синтез белков в организме превышает их распад, что надо учитывать при составлении рационов питания.

Значение для организма жиров. Жиры входят в состав растительной и животной пищи. Часть синтезированного в организме жира откладывается в запас, другая часть поступает в клетку, где вместе с липидами служит пластическим материалом, из которого строятся мембраны клеток и органоидов. Жиры являются основным источником энергии. Расщепление 1 г. жиров сопровождается выделением 38,9 кДж энергии, при этом выделяется углекислый газ и вода. Жиры могут синтезироваться в организме человека из углеводов и белков. Суточная потребность в них для взрослого человека 100 г.

Значение для организма углеводов. Углеводы, которые входят в состав продуктов растительного происхождения, в организме человека расщепляются до глюкозы. Глюкоза поступает в кровь и разносится по всему организму. Содержание ее в крови относительно постоянно и не превышает 0,08-0,12%. Если глюкоза поступает в кровь в большом количестве, то избыток ее превращается в печени в гликоген, который накапливается, а затем при необходимости снова распадается до глюкозы. При расщеплении 1 г. углеводов освобождается 17,6 кДж энергии. Потребление энергии увеличивается в организме с возрастанием нагрузки при физической работе. Часть энергии используется для механической работы и служит источником тепла, другая часть идет на синтез молекул АТФ. При избытке углеводов в организме они превращаются в жиры. Суточная потребность углеводов составляет 450-500 г.

Обмен белков, жиров и углеводов в организме взаимосвязан. Отклонение от нормы обмена одного из этих веществ влечет за собой нарушение обмена других веществ. Например, при расстройстве обмена углеводов продукты их неполного распада нарушают обмен белков и жиров, расщепление которых идет тоже не до конца, с образованием ядовитых веществ, отравляющих организм.

Значение для организма воды и минеральных солей. Наряду с обменом органических веществ в организме человека происходят водный и солевой обмен. Эти вещества не являются источником энергии и питательными веществами, но их значение для организма велико. Вода входит в состав клеток, межклеточной и тканевой жидкости, плазмы и лимфы. Общее ее количество в организме человека составляет 70%. В клетках вода химически связана с белками, углеводами и другими соединениями. Всасывание питательных веществ в кишечнике, их поглощение клетками из тканевой жидкости и выведение из клеток конечных продуктов обмена может осуществляться только в растворенном состоянии и при участии воды. Вода является непосредственным участником всех биохимических реакций организма. Суточная потребность в воде взрослого человека 2-3 литра. Поступает вода в организм при питье и в составе пищи. В тонком и толстом кишечнике вода всасывается в кровь, затем она поступает в ткани. Из клеток тканей вместе с продуктами распада проникает в кровь и лимфу. Из организма вода выводится в основном через почки, кожу, легкие и с калом. Обмен воды тесно связан с обменом солей.

В организм человека минеральные вещества поступают с пищей, откладываются в виде солей и входят в состав различных органических соединений. Так, железо включено в молекулу гемоглобина и участвует в транспортировке кислорода и углекислого газа. Йод входит в состав гормона щитовидной железы. Сера и цинк содержатся в гормонах поджелудочной железы. Для нормального кроветворения необходимы железо, кобальт, медь. Соли кальция и фосфора входят в состав костей. Калий и натрий создают определенную концентрацию ионов в клеточной мембране и по обе стороны от нее. Общее количество минеральных веществ в теле человека составляет около 4,5%.

Человек нуждается в постоянном поступлении натрия и хлора. Натрий создает определенную концентрацию ионов в плазме, тканевой жидкости. Хлор, являясь составной частью соляной кислоты, входит в состав желудочного сока. Все эти элементы поступают в организм с пищей, водой и поваренной солью. Железа много в яблоках, йода - в морской капусте, кальция - в молоке, сыре, брынзе, в яйцах и т.д.

ВИТАМИНЫ

Это самостоятельная группа веществ, которые необходимы для жизнедеятельности организма. Они оказывают действие на рост, обмен веществ и физическое состояние в целом, причем в довольно небольших количествах. Химическая природа их разнообразна. Поступают витамины в организм с пищей, в тканях человека они усваиваются и входят в состав ферментов, которые участвуют в обмене веществ. Если витамины не поступают с пищей, то нарушается состояние физического здоровья. Это доказал в прошлом столетии русский врач Н.И. Лунин, который открыл витамины (вита – значит жизнь). Дальнейшее изучение позволило установить, что они участвуют в синтезе и расщеплении аминокислот, жиров, азотистых оснований нуклеиновых кислот, гормонов, а также ацетилхолина, который обеспечивает передачу импульсов в нервной системе. Витамины образуются в растительных организмах, но имеются они и в продуктах животного происхождения. Обозначаются они заглавными буквами латинского алфавита. В настоящее время известно более двадцати витаминов. Они подразделяются на две группы - жирорастворимые (А, Д, Е, К и др.) и водорастворимые (В, С, Р, РР и др.). Заболевания, развивающиеся при недостатке витаминов в организме, называются авитаминозами или гиповитаминозами. Здоровому взрослому человеку требуется в сутки всего несколько миллиграммов различных витаминов.

Витамин С (аскорбиновая кислота) в организме человека не синтезируется. Его недостаток или отсутствие в пище сопровождается цингой. Это проявляется в первую очередь кровоточивостью десен. Затем развиваются такие признаки, как слабость, одышка, кровотечения и мелкие кровоизлияния вследствие поражения стенок кровеносных сосудов. Нарушается обмен белков, уменьшается сопротивляемость к различным заболеваниям. Потребность человека в витамине С 63-105 мг в сутки. Его много содержится в хрене, перце, рябине, смородине, землянике, капусте, щавеле, плодах шиповника, плодах цитрусовых и т.д. При нагревании пищи этот витамин разрушается. У людей, живущих в зонах умеренного, резко континентального и арктического климата, наблюдается гиповитаминоз в весеннее время года в связи с уменьшением питания растительной пищей. Поэтому зимой и весной целесообразно употреблять дополнительно аскорбиновую кислоту.

Витамины группы В (В 1 , В 2 , В 6 , В 12 и др.) регулируют многие ферментативные реакции обмена веществ, особенно обмена белков, аминокислот, нуклеиновых кислот. Недостаток или отсутствие витамина В 1 приводит к заболеванию бери-бери. Оно сопровождается расстройством нервной системы, деятельности сердца, пищеварительного аппарата. Этот витамин поступает в организм с мукой грубого помола, горохом, неочищенным рисом. Он содержится в дрожжах (пивные дрожжи), а также в продуктах животного происхождения - печени, почках, мозге, мышце сердца. В день человеку нужно 2-3 мг этого витамина.

Недостаток или отсутствие витамина В 12 сопровождается развитием тяжелой формы малокровия. Содержится витамин в печени и в стенках кишок животных, а также синтезируется бактериями кишок человека. При нарушении секреторной функции желудка усвоение витаминов не происходит.

При отсутствии в пище витаминов группы А страдает зрение вследствие так называемой куриной или ночной слепоты. При этом нарушается образование зрительных пигментов сетчатки глаз и человек плохо видит с наступлением сумерек. Кроме того, происходят изменения в коже и слизистых оболочках, усиливается слущивание эпителия, происходит воспаление и размягчение слизистой и роговицы глаз, нарушение эпителия мочеполовых органов и пищеварительного канала.

Витамин А называют еще витамином роста, он участвует в окислительно-восстановительных реакциях обмена. Источниками витамина являются животные продукты - печень, сливочное масло, рыбий жир. Растительные продукты содержат вещества, из которых в организме человека синтезируется витамин А. Таковыми являются каротины моркови, шпината, зеленого лука, салата, красного сладкого перца и др. Потребность в витамине А 1-2 мг в сутки.

Витамины группы Д (Д 2 , Д 3 и др.) играют важную роль в обмене кальция и фосфора. Их называют противорахитическими, так как при недостатке или отсутствии их развивается рахит. Это заболевание проявляется в раннем детстве и сопровождается нарушением образования костной ткани. Кости становятся мягкими и искривляются, на ребрах образуются утолщения - четки. Запаздывает и нарушается образование зубов. Наиболее богаты витамином Д печень рыб, сливочное масло, желток яиц, икра, рыбий жир. Взрослому человеку достаточно этого витамина при обычном питании, детям раннего возраста 5-125 мкг. Для профилактики авитаминоза Д необходимо также наличие солей кальция, фосфора и воздействие ультрафиолетовых лучей солнца или кварцевых источников света, при этом провитамин Д, находящийся в коже человека, переходит в витамин Д.

Кроме гиповитаминозов в настоящее время наблюдаются и гипервитаминозы при избыточном употреблении витаминов синтетического происхождения, полученных на витаминных комбинатах и свободно предлагающихся в аптеках. Гипервитаминозы отрицательно сказываются на здоровье взрослых людей, так как нарушаются процессы обмена веществ и особенно опасны при беременности, когда вследствие гипервитаминоза может родиться уродливый ребенок. Поэтому синтетические витамины нужно применять по рекомендации врача.

Способы сохранения витаминов в пищевых продуктах. Для сохранения витаминов в пище следует соблюдать правила заготовки и хранения продуктов. К примеру, в поврежденных овощах и фруктах аскорбиновая кислота быстро разрушается вследствие действия ферментов, расщепляющих их молекулы. При приготовлении пищи нужно исключать переваривание и пережаривание. Полезность свежих овощей и фруктов всегда была известна человеку. Человек еще в древние времена учился заготавливать продукты в прок - солить и квасить, вялить и коптить, сушить, мочить и замораживать. Слово «консервирование» происходит от латинского слова «консерваре», что означает «сохранять». Способов сохранения витаминов в пище много. Например, маринование, где применяется в качестве консерванта уксусная кислота. В основу соления, мочения и квашения заложен процесс молочнокислого брожения овощей и плодов от воздействия соли и сахара. Сушка - это самый древний и очень распространенный способ консервирования (плоды, ягоды, овощи, грибы). Замораживание лучший, наиболее совершенный способ консервирования, так как сохраняется почти вся пищевая ценность продуктов и их вкусовые качества. Способ этот известен давно, но в домашних условиях он получил распространение только сейчас, когда появились холодильники с большими морозильными камерами.

Рациональное питание. Для обеспечения здоровья людей в настоящее время необходима организация питания, которое предотвращает повышенное отложение жиров при недостаточной физической нагрузке. Основным принципом этого питания является использование разнообразной пищи, сбалансированной по ее количеству и качеству индивидуально для каждого человека. Питание должно предотвращать развитие атеросклероза, недостаточность кровоснабжения сердца, инфаркт миокарда, гипертоническую болезнь, заболевания пищеварительной и выделительной систем. В соответствии с задачами рационального питания разработаны нормы питания. Под нормой питания следует понимать общее количество пищи, ее компонентов, соответствующее биологической природе человека, обуславливающее благоприятное состояние здоровья людей, разных возрастов, пола, образа жизни и труда. Нормы питания одного и того же человека на протяжении его жизни изменяются в соответствии с его возрастом, характером труда, состоянием здоровья и пр. Для взрослого человека, занимающегося преимущественно умственным трудом, рекомендовано 167,4 кДж энергии на 1 кг массы тела, а для человека, занимающегося тяжелым физическим трудом 221,7 кДж/кг. Групп профессий много и для каждой, при необходимости, устанавливают особую норму питания. В соответствии с энергозатратами проводят расчет необходимого количества пищи исходя из энергетической ценности получаемых продуктов. В суточном рационе взрослых людей белки, жиры и углеводы используются в соотношении 1:1:4. В среднем в сутки взрослый человек должен потреблять 80-100 г белков, столько же жиров и 350-400 г углеводов. Расчеты производят исходя из того, что 1 г белков и 1 г углеводов выделяют по 16,7 кДж при сгорании, а 1 г жиров - 37,7 кДж.

Для юношей рекомендуется 113 г белков, 106 г жиров и 451 г углеводов, а для девушек, соответственно, 96, 90, 383 г в сутки. Для спортсменов во время тренировок и соревнований эти нормы выше, но все равно для девушек ниже, чем для юношей. Важным признаком рационального питания является биологическая полноценность питания, которая зависит еще и от необходимого количества минеральных солей и витаминов, а белки и жиры должны быть как животного, так и растительного происхождения.

Режим питания школьника. Регулярный и правильный режим питания важен для всех людей, но особенно в детском возрасте. Пища приносит наибольшую пользу человеку при приеме в определенно установленные часы. Наиболее эффективно четырехразовое питание. В 7 ч 30 мин. - 8 ч утра - завтрак, на который должно приходиться 25% суточного рациона. В 11-12 часов второй завтрак (10%). В 3-4 часа - обед с наибольшим (45%) процентом суточного рациона. И в 8-9 часов - ужин (20% рациона). При невозможности соблюдать четырехразовое питание надо при трехразовом съедать за завтраком 30% суточного рациона, в обед до 50%, а в ужин около 20%. Нужно помнить, что при нерегулярном питании (один – два раза в день), спешке во время еды и частом употреблении трудно перевариваемых блюд развивается воспаление слизистой оболочки желудка (гастрит).

Обмен веществ непрерывно протекает во всех клетках, тканях и системах организма и способствует поддержанию жизнедеятельности и сохранению постоянства внут­ренней среды. В результате обменных процессов обра­зуются вещества, необходимые для построения клеток и тканей.

Посредством обмена веществ обеспечивается поступление в организм энергии, необходимой для его жизне­деятельности, восстанавливается потеря воды (водный обмен), удовлетворяется потребность в минеральных веществах (минеральный обмен), витаминах (витамин­ный обмен) возмещается потеря органических веществ, используемых для синтетических процессов (пластиче­ский обмен).

Обмен веществ характеризуется двумя противополож­ными процессами - ассимиляцией и диссимиляцией, которые определяют непрерывную связь организма с окружающей средой.

Ассимиляция - это процесс синтеза необходимых организму веществ и использования их для роста и развития. Источником таких веществ является повсед­невная пища.

Диссимиляция - процесс распада веществ, их окис­ление кислородом и выведение из организма.

Процессы синтеза и распада протекают непрерывно и одновременно и находятся в единстве между собой. Однако в отдельные периоды жизни это равновесие нарушается. Например, в детстве, когда организм интен­сивно растет и развивается, превалируют процессы ассимиляции. Напротив, когда организм стареет или ослаблен болезнью либо голодом, преобладают процессы диссимиляции.

Обмен веществ слагается из белкового, углеводного, жирового, витаминного, минерального и водного обменов, которые тесно связаны сложными биохимическими реакциями.

В регуляции обмена ведущая роль принадлежит центральной нервной системе, которая координирует эти процессы с помощью гормонов. Так, белковому обмену способствует гормон щитовидной железы - тироксин; на жировой обмен влияют гормоны поджелудочной и щитовидной желез, надпочечников и гипофиза; на углеводный обмен - гормон поджелудочой железы - инсулин и гормон надпочечников - адреналин.

В результате обмена веществ образуется также энер­гия, необходимая организму для биохимических реакций и покрытия тепловых и механических затрат. Выделение энергии происходит в результате окисления и расщепле­ния сложных органических веществ, которые поступают с пищей.

В качестве единицы измерения расхода энергии используются калория или джоуль.

Еще по теме ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ В ОРГАНИЗМЕ ЧЕЛОВЕКА:

  1. Несколько существенных замечаний об обмене веществ и энергии
  2. Физиологические потребности организма в энергии и пищевых веществах
  3. Глава 12 ЛЕКАРСТВЕННЫЕ СРЕДСТВА, ПРЕИМУЩЕСТВЕННО ВЛИЯЮЩИЕ НА ОБМЕН ВЕЩЕСТВ В ОРГАНИЗМЕ
  4. Пути выведения лекарств из организма. Механизмы почечной экскреции и факторы, влияющие на выделение веществ с мочой. Циркуляция лекарственных веществ в организме

Мы часто слышим, что причиной болезней является нарушение обмена веществ (метаболизма). Этот процесс является основой существования всего живого мира. Что же собой представляет обмен веществ? Как мы получаем энергию в результате такого процесса?

Ассимиляция и диссимиляция

В клетках всех живых организмов постоянно происходит процесс синтеза молекулярных соединений и распад их с выделением энергии. Синтез органических веществ - это ассимиляция (анаболизм). Она позволяет обновлять клетки, накапливать запас энергии.

Распад органических веществ - процесс, противоположный ассимиляции. Это диссимиляция (катаболизм). Такие реакции происходят с поглощением кислорода. Именно катаболизм всегда связан с окислением. При этом освободившаяся энергия идет на синтез аденозинтрифосфорной кислоты. Конечные продукты распада выводятся за пределы клеток, а позже и вовсе из организма.

Как видим, ассимиляция и диссимиляция - два противоположных и тесно связанных процесса, на которых базируется обмен веществ. Нарушение одной из составляющих всегда приводит к сбою в метаболизме. Он, в свою очередь, делится на белковый, жировой, углеводный и водно-солевой. Здоровый обмен веществ возможен, только когда в организм постоянно поступает необходимое количество жиров, белков и углеводов.

Потребность организма в этих в веществах неодинаковая. Она зависит от затрат энергии конкретного человека, его двигательной активности, возраста, пола, генетики. В процессе жизнедеятельности энергетические запасы организма уменьшаются, и пополняться они должны за счет пищи. Соотношение энергии, поступающей с пищей, и той, которая организмом расходуется, называют энергетическим балансом. Если у человека с едой поступает больше энергии, чем он расходует, то она начинает откладываться в организме в виде жира. Ожирение - один из видов нарушения обмена веществ. Вот почему важно, чтобы количество потребляемой пищи соответствовало энергетическим затратам.

Обмен белков

Они являются пластическим материалом, из которого строятся ткани и клетки организма. Белки разнообразны. Их состав - это комбинации 20 аминокислот.

Белки в пищеварительном тракте расщепляются до аминокислот. Из них же в тканях синтезируются те белки, которые им нужны. Например, в мышечных клетках происходит синтез белка миозина. Продукты распада белка из организма выделяются с потом, мочой, выдыхаемым воздухом.

При избыточном потреблении человеком белковой пищи она преобразуется в гликоген и жир. Средняя суточная потребность взрослого человека в белках составляет 100-118 граммов. Особенность организма детей в том, что у них синтез белка превышает распад, потому что происходит рост, нарастание мышечной массы.

Углеводный обмен

В организм человека больше углеводов поступает с пищей растительного происхождения. Они расщепляются до глюкозы. Последняя всасывается в кровь. У здорового человека стабильное содержание глюкозы в крови. Это 0,08-0,12%. Если же ее поступает в кровь слишком много, то избыток превращается в печени в гликоген (животный крахмал). Он накапливается, а при необходимости вновь распадается и трансформируется в глюкозу. Необходимость в ней возрастет, когда человек работает физически. Если организм получает избыток углеводов с пищей, то они превращаются в жиры. Средняя суточная потребность человека в углеводах составляет 450-500 граммов.

Обмен липидов

Жиры человек получает с животной и растительной пищей. Последние - более ценные и полезные. Определенная часть синтезированного организмом жира откладывается про запас. Некоторое количество его поступает в клетки и служит составляющей их мембран.

Жиры - ценный источник энергии. Когда они окисляются, выделяется углекислый газ, освобождается энергия. Жиры в организме могут синтезироваться из белков и углеводов. Суточная потребность в этих веществах в среднем составляет 100 граммов.

Обмен липидов, белков, углеводов взаимосвязан. Например, при нарушении жирового обмена происходит также сбой и в углеводном. Поэтому важно контролировать энергетический баланс организма, проще говоря, не переедать.

В продолжение темы:
Музыка в танцах

БиографияДмитрий Олегович Рогозин - российский государственный деятель, дипломат, доктор философских наук, доктор технических наук. С декабря 2011 года - заместитель...

Новые статьи
/
Популярные